Corrosión galvánica


La corrosión galvánica es un proceso electroquímico en el que un metal se corroe preferentemente cuando está en contacto eléctrico con un tipo diferente de metal (más noble) y ambos metales se encuentran inmersos en un electrolito o medio húmedo.[1] Por el contrario, una reacción galvánica se aprovecha en baterías y pilas para generar una corriente eléctrica de cierto voltaje. Un ejemplo común es la pila de carbono-zinc donde el zinc se corroe preferentemente para producir una corriente. La batería de limón es otro ejemplo sencillo de cómo los metales diferentes reaccionan para producir una corriente eléctrica.

Cuando dos o más diferentes tipos de metal entran en contacto en presencia de un electrolito, se forma una celda galvánica porque metales diferentes tienen diferentes potenciales de electrodo o de reducción. El electrolito suministra el medio que hace posible la migración de iones por lo cual los iones metálicos en disolución pueden moverse desde el ánodo al cátodo. Esto lleva a la corrosión del metal anódico (el que tienen menor potencial de reducción) más rápidamente que de otro modo; a la vez, la corrosión del metal catódico (el que tiene mayor potencial de reducción) se retrasa hasta el punto de detenerse. La presencia de electrolitos y un camino conductor entre los dos metales puede causar una corrosión en un metal que, de forma aislada, no se habría oxidado.

Incluso un solo tipo de metal puede corroerse galvánicamente si el electrolito varía en su composición, formando una celda de concentración

Esquema de actividad de la corrosión galvánica entre tornillo acero inoxidable y chapa de acero galvanizado.

Corrosión galvánica de una chapa de acero galvanizado en contacto con acero inoxidable (0,7V-ver tabla

Prevención de la corrosión galvánica

Hay varias maneras de reducir y prevenir este tipo de corrosión.[2]

  • Una manera es aislar eléctricamente los dos metales entre sí. A menos que estén en contacto eléctrico, no puede haber una celda galvánica establecida. Esto se puede hacer usando plástico u otro aislante para separar las tuberías de acero para conducir agua de los accesorios metálicos a base de cobre, o mediante el uso de una capa de grasa para separar los elementos de aluminio y acero. El uso de juntas de material absorbente, que puedan retener líquidos, es a menudo contraproducente. Las tuberías pueden aislarse con un recubrimiento para tuberías fabricado con materiales plásticos, o hechas de material metálico recubierto o revestido internamente. Es importante que el recubrimiento tenga una longitud mínima de unos 500 mm para que sea eficaz.

Corrosión por deterioro del revestimiento.

  • Otra forma es mantener a los metales secos y / o protegidos de los compuestos iónicos (sales, ácidos, bases), por ejemplo, pintando o recubriendo al metal protegido bajo plástico o resinas epoxi, y permitiendo que se sequen.
  • Revestir los dos materiales y, si no es posible cubrir ambos, el revestimiento se aplicará al más noble, el material con mayor potencial de reducción. Esto es necesario porque si el revestimiento se aplica sólo en el material más activo (menos noble), en caso de deterioro de la cubierta, habrá un área de cátodo grande y un área de ánodo muy pequeña, y el efecto en la zona será grande pues la velocidad de corrosión será muy elevada.
  • También es posible elegir dos metales que tengan potenciales similares. Cuanto más próximos entre sí estén los potenciales de los dos metales, menor será la diferencia de potencial y por lo tanto menor será la corriente galvánica. Utilizar el mismo metal para toda la construcción es la forma más precisa de igualar los potenciales y prevenir la corrosión.

Ánodos de sacrificio (aluminio) montados al vuelo en una estructura metálica de acero para prevenir la corrosión.

  • Las técnicas de galvanoplastia o recubrimiento electrolítico con otro metal (chapado) también puede ser una solución. Se tiende a usar los metales más nobles porque mejor resisten la corrosión: cromo, níquel, plata y oro son muy usados.[3]
  • La protección catódica mediante ánodos de sacrificio: Se conecta el metal que queremos proteger con una barra de otro metal más activo, que se oxidará preferentemente, protegiendo al primer metal.[2] Se utilizan uno o más ánodos de sacrificio de un metal que sea más fácilmente oxidable que el metal protegido. Los metales que comúnmente se utilizan para ánodos de sacrificio son el zinc, el magnesio y el aluminio.

Esto es habitual en los calentadores de agua y tanques de agua caliente de las calderas. La falta de regularidad al reemplazar los ánodos de sacrificio en los calentadores de agua disminuye severamente la vida útil del tanque. Las sustancias para corregir la dureza del agua (ablandadores) de agua tienden a degradar los ánodos de sacrificio y los tanques más rápidamente

Compatibilidad entre acero galvanizado y aluminio

¿Se pueden poner en contacto el acero galvanizado y el aluminio o están sujetos a la corrosión galvánica?. Por teoría, experimentos y práctica, estos dos materiales son definitivamente compatibles.

1. La teoría predice que el aluminio y el acero galvanizado son compatibles. El zinc (recubrimiento del acero) y el aluminio están adyacentes el uno junto al otro en la escala de galvanizado.[9] La presencia del aluminio acoplado con el acero galvanizado incrementa la densidad actual (rango de corrosión) del zinc solo del 0.1% al 1% (el aluminio es el cátodo, o el lado protegido del par)[10] Este incremento en el rango de corrosión del zinc es insignificante, y por lo tanto, el contacto entre el aluminio y el acero galvanizado no acelera significativamente la corrosión de ninguno de los dos materiales.

2. Las pruebas experimentales confirman la teoría. Por ejemplo, Doyle y Wright[11] muestran que el grado de corrosión del aluminio no se incrementa al estar en contacto con el acero galvanizado. Por ello concluyen que el zinc es muy compatible con el aluminio en todos los ambientes, y en varios casos incluso mostrando que el aluminio estaba siendo protegido catódicamente por el zinc.

3. La normativa ha incorporado estos resultados. Por ejemplo, la Asociación del Aluminio, en su código estructural, establece que no hay necesidad de separar o pintar las superficies de acero galvanizado que estén en contacto con el aluminio.[12]

4. Muchas estructuras y componentes en el último medio siglo atestiguan lo anterior. El revestimiento de aluminio es frecuentemente fijado a estructuras de acero galvanizado y muy a menudo se utilizan tornillos con recubrimiento de zinc. La mayoría de las estructuras exteriores de tribunas de estadios en Norte América están hechas de una estructura galvanizada en la que se fijan pisos o asientos de aluminio. Y también un número incontable de conectores de sistemas de conexión en servicio en todo el mundo han sido fabricados uniendo tubos de acero galvanizado exitosa y permanentemente.

¿Como afecta este tipo de corrosión al acero galvanizado?

Este soporte de batería de contadores de agua, ha tenido que subtituir al original a los 4 años de uso, por estar conectado a una tubería de cobre del edificio ( 0.85 V de diferencia de potencial, ver el punto de corrosión abajo a la izquierda), poniendo una batería de PVC, la duración es ilimitada

Generalmente el acero galvanizado se comporta bien en contacto con los metales más habituales en la construcción cuando se encuentran expuestos a la atmósfera, siempre que la relación superficial entre el acero galvanizado y el otro metal sea alta. Por el contrario, en condiciones de inmersión el riesgo de ataque por corrosión bimetálica se incrementa de forma significativa, por lo que normalmente es necesario utilizar algún tipo de aislamiento entre ambos metales.

Comportamiento del acero galvanizado en contacto con:

Cobre. Dada la gran diferencia de potencial entre el acero galvanizado y el cobre o las aleaciones de este metal, se recomienda siempre el aislamiento eléctrico de los dos metales, incluso en condiciones de exposición a la atmósfera. Donde sea posible, el diseño debe además evitar que el agua o las condensaciones de humedad escurran desde el cobre sobre los artículos galvanizados, ya que el cobre disuelto en forma iónica podría depositarse sobre las superficies galvanizadas y provocar la corrosión del zinc.

Por este mismo motivo, en las conducciones de agua no deben mezclarse tramos de tuberías de cobre y de acero galvanizado (aunque se utilicen elementos de aislamiento eléctrico en las uniones de ambos tipos de tuberías), especialmente si los tramos de cobre se colocan delante de los de acero galvanizado y, por tanto, el flujo de agua pasa principalmente por las tuberías de cobre.

Aluminio. El riesgo de corrosión bimetálica debida al contacto entre el acero galvanizado y el aluminio en la atmósfera es relativamente bajo.

Conviene recordar que una aplicación frecuente en la que se usan conjuntamente estos dos metales son los revestimientos con paneles de aluminio montados sobre una subestructura de perfiles de acero galvanizado. En estos casos es aconsejable aunque no imprescindible, aislar ambos metales, debido a la gran superficie de los paneles de aluminio en relación con la de los perfiles en contacto.

Plomo. La posibilidad de corrosión bimetálica con el plomo es baja en una exposición a la atmósfera. No se han detectado problemas en aplicaciones tales como el uso de tapajuntas de plomo con productos o recubrimientos de zinc, o en la utilización de plomo para fijar postes o elementos estructurales galvanizados.

Acero inoxidable. El uso más habitual del acero inoxidable en contacto con acero galvanizado es en forma de tornillos y tuercas en condiciones de exposición a la atmósfera (Fig. 4). Este tipo de uniones no suelen ser muy problemáticas, debido al bajo par galvánico que se establece entre ambos metales y a la elevada relación superficial entre el metal anódico (acero galvanizado) y el catódico (acero inoxidable). No obstante, en medios de elevada conductividad (humedad elevada o inmersión en agua) es recomendable disponer un aislamiento entre las superficies en contacto de ambos metales (p.e. arandelas de plástico o neopreno y casquillos o cintas aislantes).

Véase también

Referencias

  1. Corrosión y protección. Luis Bilurbina Alter, Francisco Liesa Mestres, José Ignacio Iribarren Laco. Ediciones de la Universidad Politécnica de Cataluña, 2003. ISBN: 8483017113. Pág. 52.
  2. a b c Principios de electrotecnia. Adolf Senner. Editorial Reverté, 1994. ISBN: 8429134484. Pág.437
  3. Introducción a la ciencia e ingeniería de los materiales. Vol. 2. William D. Callister. Editorial Reverté, 1996. ISBN: 8429172548. Pág. 595
  4. Metalurgia general. Volumen 2. F.R. Morral. Editorial Reverté, 1985. ISBN: 8429160736. Pág.1378
  5. «Electrical Design, Cathodic Protection».  United States Army Corps of Engineers (22-04-1985).
  6. Water. Hemat, R.A.S. Editor: Urotext. ISBN: 1903737125. Pág. 826
  7. Wheeler, Gerson J., The design of electronic equipment: a manual for production and manufacturing, Prentice-Hall, 1972
  8. a b c Handbook of Corrosion Engineering by Pierre R. Roberge
  9. Jones, D., Principles and Prevention of Corrosion, Mcmillan, New York, 1992., pag. 169.
  10. Jones, D., Principles and Prevention of Corrosion, Mcmillan, New York, 1992., tabla 6.17, pag. 1894.
  11. Doyle, D.P. and Wright, T. E., “Quantitative Assessment of Atmospheric Galvanic Corrosion”, Galvanic Corrosion, ASTM STP 978, H.P.Hack, Ed., American Society for Testing and Materials, Philadelphia, 1988, pg. 168.
  12. Aluminum Design Manual, The Aluminum Association, Washington D.C., 2000, pág. I-B-62)

Enlaces externos

En español

  • Cap. 18: Corrosión y degradación de materiales. En: Introducción a la ciencia e ingeniería de los materiales, Volumen 2. William D. Callister. Editorial Reverté, 1996. ISBN: 8429172548. Pág. 565.
  • Cap. 22: Corrosión. En: Ingeniería electroquímica: información exhaustiva de la teoría y práctica de los procesos electroquímicos industriales de sus aplicaciones y productos. C.L. Mantell. Editorial Reverté, 1980. ISBN: 8429179402. Pág. 545

En inglés

El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; podrían ser aplicables cláusulas adicionales. Léanse los términos de uso para más información.
Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro

Anuncios

Acerca de fcastrog
Navegando por las redes sociales con "el BLOG de FCASTROG" y "Weblog AluminioyPVC".

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: